
21-st International Olympiad In Informatics

TASKS AND SOLUTIONS

August 8 - 15, 2009

Plovdiv, Bulgaria



2 21-st International Olympiad In Informatics

Day 0

Task 0.1 AREA

A large agricultural corporation is undertaking an audit of its N land proper-
ties. As a first step, they would like to know the total area of their properties.
Each property has a rectangular shape, and no two properties overlap. You realize
that this is a trivial calculation, but you understand that you need to solve this
problem in order to test your ability to properly handle large amounts of data and
large numbers under the IOI 2009 contest system.

TASK
Write a program that, given the dimensions of the N land properties, deter-

mines the sum of their areas.

CONSTRAINTS
1 ≤ N ≤ 500 000 – The number of land properties
1 ≤ Ak, Bk ≤ 20 000 – The lengths of the sides of property k

INPUT
Your program should read from the standard input the following data:
• The first line contains a single integer: the number of properties N .
• The next N lines describe the properties, one property per line. The kth of

these lines describes property number k and it contains two integers separated by
a single space: the lengths of the sides of the property Ak and Bk measured in
meters.

OUTPUT
Your program should write to the standard output a single line containing a

single integer: the total area of all properties, measured in square meters.

IMPORTANT NOTE
The final answer may not fit in 32 bits. You have to use a 64-bit data type,

such as long long in C/C++ or int64 in Pascal, in order to compute and store
the answer in a single variable. Please see the technical info sheet for details.



2009 August 8 - 15, Plovdiv, Bulgaria 3

EXAMPLE

Sample Input Sample Output
3
15 25
5 6
3 1

408

Task 0.2 HILL (proposed by Iskren Chernev)

An extraterrestrial team of contestants, known as the aliens, is coming to Plov-
div for the IOI. They would like to land their flying saucer on one of Plovdivs hills,
but they have no map of the city, so they need to use their laser scanner to find
a hill. The aliens have divided the city into a grid of N by M cells, and each
time they use the scanner they can determine the altitude of a single cell. Their
scanner is so precise that no two cells would ever have the same altitude.

The aliens define a hill as a cell that has higher altitude than all of its adjacent
cells. Two cells are considered adjacent if they share a side. Thus typically each
cell has four adjacent ones, with the cells on the border of the grid being the
exception (they have less than four adjacent cells).

The aliens have time for only 3 050 scans before their saucer hits the ground.
Help the aliens find a hill before they run out of time.

TASK

Write a program that, given the dimensions of the grid, interactively uses the
scanner to determine the location of a hill, while doing no more than 3 050 scans
in total.

CONSTRAINTS

1 ≤ N, M ≤ 1 000 – The dimensions of the grid
1 ≤ Ax,y ≤ 2 000 000 000 – The altitude of cell < x, y >

INPUT

Your program should read from the standard input a single line with two
integers N and M , separated by a single space.



4 21-st International Olympiad In Informatics

INTERACTION
After reading the input data, your program should start using the laser scanner.

Each time you want to use the scanner for a cell with coordinates x and y (1 ≤ x ≤
N , 1 ≤ y ≤M), you should print a single line on the standard output, containing
three integers separated by single spaces: 0 (a literal zero), x and y, in this order.

After submitting your request to the scanner, you should read a single line on
the standard input. It will contain a single integer: the altitude of the cell with
coordinates x and y in some alien units.

OUTPUT
When your program has determined the location of a hill < a, b > (1 ≤ a ≤ N ,

1 ≤ b ≤ M), you should report your answer by printing a single line on the
standard output, containing three integers separated by single spaces: 1 (a literal
one), a and b, in this order.

IMPORTANT NOTE: In order to interact properly with the scanner, your
program needs to flush the standard output after every line that you print on the
standard output. Please see the technical info sheet for instructions on how to do
this properly.

EXAMPLE

Sample Input Sample Output
3 2

3

4

1

7

6

0 1 1 [flush stdout/output]

0 2 1 [flush stdout/output]

0 3 1 [flush stdout/output]

0 1 2 [flush stdout/output]

0 2 2 [flush stdout/output]

1 1 2 [flush stdout/output]



2009 August 8 - 15, Plovdiv, Bulgaria 5

0.3 MUSEUM (proposed by Boyko Bantchev)

The Plovdiv Museum of Modern Art has an exhibition of ancient Thracian
vases. There are N vases total. The first one is a miniature of height 1 centimeter.
The second one is of height 2 centimeters; the third one is 3 centimeters tall and
so on until the N th vase, which is N centimeters tall.

Since this a modern art museum and the vases are ancient, the organizers of
the exhibition would like to add a modern, chaotic twist to the presentation of the
vases. They have decided to arrange the vases in a line that satisfies the following
condition: For any three vases A, B and C, such that Bs height is exactly the
average of the heights of A and C, either B must be positioned to the left of both
A and C, or B must be positioned to the right of both A and C (in other words,
B may not be positioned between A and C on the line).

TASK
Write a program that, given the number of vases, determines a linear arrange-

ment of the vases that satisfies the condition of the exhibition organizers.

CONSTRAINTS
1 ≤ N ≤ 2 000 – The number of vases

INPUT
You are given five problem instances in the files museum.1.in to museum.5.in.

Each file contains a single line, which in turn contains a single integer: the number
of vases N .

OUTPUT
You are to submit five output files, named museum.1.out to museum.5.out,

each corresponding to one of the input files. The files should be in the following
format:

There should be N lines, each representing the N positions in the arrangement,
in order from left to right. Line k should contain a single integer Hk, the height
of the vase you decided to place on position k. All N heights should be distinct
integers between 1 and N inclusive.



6 21-st International Olympiad In Informatics

EXAMPLE

Sample Input Sample Output
museum.0.in museum.0.out

5 3
1
2
5
4

In the above arrangement, 3 is neither between 2 and 4, nor is it between 1
and 5. Also, 2 is not between 1 and 3, and 4 is not between 3 and 5. Thus, it
satisfies the condition of the exhibition organizers.

TECHNICAL INFO SHEET (day 0)

These pages contain helpful information on how to avoid slow input/output
performance with C++ streams (cin / cout), how to use 64-bit data types (vari-
ables) and how to flush the output for interactive tasks.

Slow Input / Output with C++ Streams

When solving tasks with very large amounts of input / output data, you may
notice that C++ programs using the cin and cout streams are much slower than
equivalent programs that use the scanf and printf functions for input and output
processing. Thus, if you are using the cin / cout streams we strongly recommend
that you switch to using scanf / printf instead. However, if you still want to use cin
/ cout, we recommend adding the following line at the beginning of your program:

ios::sync_with_stdio(false);

and also making sure that you never use endl, but use \n instead.

Please note, however, that including ios::sync_with_stdio(false) breaks
the synchrony between cin / cout and scanf / printf, so if you are using this, you
should never mix usage of cin and scanf, nor mix cout and printf.

64-bit Data Types

For some tasks you may need to deal with numbers too large to fit in 32 bits.
In these cases, you would have to use a 64-bit integer data type, such as long long



2009 August 8 - 15, Plovdiv, Bulgaria 7

in C/C++ or int64 in Pascal. Here is some sample code that illustrates the usage
of these data types:

C/C++

int main(void) {
long long varname;
scanf("%lld", &varname);
// Do something with the varname variable
printf("%lld\n", varname);
return 0;

}

Pascal

var
varname: Int64;

begin
read(varname);
{ Do something with the varname variable }
writeln(varname);

end.

Flushing the Output

Whenever you solve an interactive task, you always need to flush the buffer
of your output after every new line printed on the output. Here is some code to
illustrate how to do this under C, C++ and Pascal:

C or C++ with scanf / printf

fflush(stdout);

C++ with cin / cout

cout << flush;

Pascal

flush(output);



8 21-st International Olympiad In Informatics

Task Overview Sheet (Day 0)

Area Hill Museum
Type Batch Interactive Output-only
Detailed Feedback Full Partial None
Time Limit (per test case) 2 seconds 1 second Not Applicable
Memory Limit (per test case) 32 MB 64 MB Not Applicable
Points 100 100 100

NOTE: On the actual competition there will be four problems on each day. We
have only three problems here because the practice contest is shorter in duration
and because there are only three possible task types.



2009 August 8 - 15, Plovdiv, Bulgaria 9

Day 1

1.1 ARCHERY (proposed by Velin Tzanov)

An archery tournament is held according to the following rules. There are N
targets arranged in a line and numbered from 1 to N inclusive according to their
place on the line (the leftmost target being target 1, and the rightmost target being
target N). There are also 2∗N archers. At any time during the tournament, there
are two archers on each target. Every round of the tournament goes according to
the following procedure:

The two archers on each target compete with each other and determine a
winner and a loser between them. Then all archers are rearranged as follows:

The winners on targets 2 to N inclusive move to the target on their left (i.e.,
targets 1 to N − 1 respectively).

The losers on targets 2 to N inclusive, as well as the winner on target 1, remain
on the same target.

The loser on target 1 moves to target N .
The tournament continues for R rounds, with the number of rounds being at

least as many as the number of archers (i.e., R ≥ 2 ∗N).
You are the only archer to arrive for the tournament exactly on time. All other

2 ∗N − 1 archers have arrived early and are already standing in a line. What you
have to do now is to insert yourself somewhere into the line amongst them. You
know that after you take your position, the two leftmost archers in the line will
start the tournament on target 1, the next two will start on target 2 and so on,
with the two rightmost archers starting on target N .

All the 2 ∗ N archers in the tournament (including yourself) are ranked by
skill, where a smaller rank corresponds to better skill. No two archers have the
same rank. Also, whenever two archers compete, the one with the smaller rank
will always win.

Knowing how skilled each of your competitors is, you want to insert yourself
in such a way as to ensure that you will finish the tournament on a target with as
small a number as possible. If there are multiple ways to do this, you prefer the
one that starts at a target with as large a number as possible.

TASK
Write a program that, given the ranks of all archers, including yourself, as

well as your competitors arrangement on the line, determines on which target you



10 21-st International Olympiad In Informatics

should start the tournament, so that you can achieve your goals as defined above.

CONSTRAINTS

1 ≤ N ≤ 200 000 – The number of targets; also equal to half the number of
archers

2 ∗N ≤ R ≤ 1 000 000 000 – The number of tournament rounds
1 ≤ Sk ≤ 2 ∗N – The rank of archer k

INPUT

Your program must read from standard input the following data:
The first line contains the integers N and R, separated by a space.
The next 2 ∗ N lines list the ranks of the archers. The first of these lines

contains your rank. The rest of these lines contain the ranks of the other archers,
one archer per line, in the order in which they have arranged themselves (from left
to right). Each of these 2 ∗N lines contains a single integer between 1 and 2 ∗N
inclusive. A rank of 1 is the best and a rank of 2 ∗N is the worst. No two archers
have the same rank.

OUTPUT

Your program must write to standard output a single line containing a single
integer between 1 and N inclusive: the number of the target on which you will
start the tournament.

GRADING

For a number of tests, worth a total of 60 points, N will not exceed 5 000.
Also, for some of these tests, worth a total of 20 points, N will not exceed 200.

EXAMPLES

Sample Input Smaple Output
4 8
7
4
2
6
5
8
1
3

3



2009 August 8 - 15, Plovdiv, Bulgaria 11

You are the second worst archer. If you start on target 1, you will then go to
target 4 and stay there until the end. If you start on target 2 or 4, you will just
stay there for the whole tournament. If you start on target 3, you will beat the
worst archer and then move to target 2 and stay there.

Sample Input Smaple Output
4 9
2
1
5
8
3
4
7
6

2

You are the second best archer. The best one is already on target 1 and will
stay there for the whole duration of the tournament. Thus, no matter where you
start, you will always move from your target, going through all targets from 4 to
1 over and over again. In order for you to end on target 1 after 9 transitions, you
have to start on target 2.

1.2 HIRING (proposed by Velin Tzanov)

You have to hire workers for a construction project. There are N candidates
applying for the job, numbered from 1 to N inclusive. Each candidate k requires
that if he is hired, he must be paid at least Sk dollars. Also, each candidate k has
a qualification level Qk. The regulations of the construction industry require that
you pay your workers in proportion to their qualification level, relative to each
other. For example, if you hire two workers A and B, and QA = 3 ∗QB , then you
have to pay worker A exactly three times as much as you pay worker B. You are
allowed to pay your workers non-integer amounts of money. This even includes
quantities that cannot be written with a finite number of digits in decimal form,
such as a third or a sixth of a dollar.

You have W dollars at hand and you want to hire as many workers as possible.
You decide whom to hire and how much to pay them, but you have to meet the
minimum salary requirements of those you choose to hire, and you have to obey
the industry regulations. You also have to fit within your budget of W dollars.



12 21-st International Olympiad In Informatics

The nature of your project is such that the qualification level is completely
irrelevant, so you are only interested in maximizing the number of workers without
regard to their qualification level. However, if there is more than one way to achieve
this, then you want to select the one where the total amount of money you have
to pay your workers is as small as possible. In case there is more than one way to
achieve this, then you are indifferent among these ways and you would be satisfied
with any one of them.

TASK
Write a program that, given the different salary requirements and qualification

levels of the candidates, as well as the amount of money you have, determines
which candidates you should hire. You must hire as many of them as possible and
you must do so with as little money as possible, while complying with the industry
regulations specified above.

CONSTRAINTS
1 ≤ N ≤ 500 000 – The number of candidates
1 ≤ Sk ≤ 20 000 – The minimum salary requirement of candidate k
1 ≤ Qk ≤ 20 000 – The qualification level of candidate k
1 ≤W ≤ 10 000 000 000 – The amount of money available to you

IMPORTANT NOTE
The maximum value of W does not fit in 32 bits. You have to use a 64-bit

data type, such as long long in C/C++ or int64 in Pascal, in order to store the
value of W in a single variable. Please see the technical info sheet for details.

INPUT
Your program must read from standard input the following data:

• The first line contains the integers N and W , separated by a space.
• The next N lines describe the candidates, one candidate per line. The kth of

these lines describes candidate number k and it contains the integers Sk and Qk,
separated by a space.

OUTPUT
Your program must write to standard output the following data:
• The first line must contain a single integer H, the number of workers that

you hire.
• The next H lines must list the identifying numbers of the candidates you

choose to hire (each of them a different number between 1 and N), one per line,
in any order.



2009 August 8 - 15, Plovdiv, Bulgaria 13

GRADING
For any given test case, you will receive full points if your choice of candidates

enables you to achieve all of your goals, while satisfying all constraints. If you
produce an output file with a correct first line (i.e., a correct value of H), but
which does not meet the above description, you will receive 50% of the points for
that test case. The latter will be the case even if the output file is not properly
formatted, as long as the first line is correct.

For a number of tests, worth a total of 50 points, N will not exceed 5 000.

EXAMPLES

Sample Input Sample Output
4 100
5 1000
10 100
8 10
20 1

2
2
3

The only combination for which you can afford to hire two workers and still
meet all the constraints is if you select workers 2 and 3. You can pay them 80 and
8 dollars respectively and thus fit in your budget of 100.

Sample Input Sample Output
3 4
1 2
1 3
1 3

3
1
2
3

Here you can afford to hire all three workers. You pay 1 dollar to worker 1 and
1.50 dollars each to workers 2 and 3, and you manage to hire everyone with the 4
dollars that you have.

Sample Input Sample Output
3 40
10 1
10 2
10 3

2
2
3

Here you cannot afford to hire all three workers, as it would cost you 60 dollars,
but you can afford to hire any two of them. You choose to hire workers 2 and 3



14 21-st International Olympiad In Informatics

because they would cost you the smallest sum of money, compared to the other
two-worker combinations. You can pay 10 dollars to worker 2 and 15 dollars to
worker 3 for a total of 25 dollars. If you were to hire workers 1 and 2 you would
have to pay them at least 10 and 20 dollars respectively. If you were to hire 1 and
3, then you would have to pay them at least 10 and 30 dollars respectively.

Task 1.3 POI (proposed by Carl Hultquist)

The local Plovdiv Olympiad in Informatics (POI) was held according to the
following unusual rules. There were N contestants and T tasks. Each task was
graded with only one test case, therefore for every task and every contestant there
were only two possibilities: either the contestant solved the task, or the contestant
did not solve the task. There was no partial scoring on any task.

The number of points assigned to each task was determined after the contest
and was equal to the number of contestants that did not solve the task. The score
of each contestant was equal to the sum of points assigned to the tasks solved by
that contestant.

Philip participated in the contest, but he is confused by the complicated scoring
rules, and now he is staring at the results, unable to determine his place in the
final standings. Help Philip by writing a program that calculates his score and his
ranking.

Before the contest, the contestants were assigned unique IDs from 1 to N inclu-
sive. Philips ID was P . The final standings of the competition list the contestants
in descending order of their scores. In case of a tie, among the tied contestants,
those who have solved more tasks will be listed ahead of those who have solved
fewer tasks. In case of a tie by this criterion as well, the contestants with equal
results will be listed in ascending order of their IDs.

TASK

Write a program that, given which problems were solved by which contestant,
determines Philips score and his rank in the final standings.

CONSTRAINTS

1 ≤ N ≤ 2 000 – The number of contestants
1 ≤ T ≤ 2 000 – The number of tasks
1 ≤ P ≤ N – Philips ID



2009 August 8 - 15, Plovdiv, Bulgaria 15

INPUT
Your program must read from standard input the following data:
• The first line contains the integers N , T and P , separated by individual

spaces.
• The next N lines describe which tasks were solved by which contestant. The

kth of these lines describes which tasks were solved by the contestant with ID
k. Each such line contains T integers, separated by spaces. The first of these
numbers denotes whether or not contestant k solved the first task. The second
number denotes the same for the second task and so on. These T numbers are all
either 0 or 1, where 1 means that contestant k solved the corresponding task, and
0 means that he or she did not solve it.

OUTPUT
Your program must write to standard output a single line with two integers

separated by a single space. First, the score that Philip got on the POI competi-
tion. Second, Philips rank in the final standings. The rank is an integer between 1
and N inclusive, with 1 denoting the contestant listed at the top (i.e., a contestant
who has the highest score) and N to the one listed at the bottom (i.e., a contestant
with the lowest score).

GRADING
For a number of tests, worth a total of 35 points, no other contestant will have

the same score as Philip.

EXAMPLE

Sample Input Sample Output
5 3 2
0 0 1
1 1 0
1 0 0
1 1 0
1 1 0

3 2

The first problem was unsolved by only one contestant, so it is worth 1 point.
The second problem was unsolved by two contestants, so it is worth 2 points. The
third problem was unsolved by four contestants, so it is worth 4 points. Thus the
first contestant has a score of 4; the second contestant (Philip), the fourth and the



16 21-st International Olympiad In Informatics

fifth contestants all have a score of 3; and the third contestant has a score of 1.
Contestants 2, 4 and 5 are all tied according to the first tie-break rule (number of
problems solved), and according to the second tie-break rule (smaller ID) Philip
ranks before the others. Thus Philips rank in the final standings is 2. He is only
behind the contestant with ID 1.

Task 1.4 RAISINS (proposed by Emil Kelevedjiev)

Plovdiv’s famous master chocolatier Bonny needs to cut a slab of chocolate
with raisins. The chocolate is a rectangular block of identical square pieces. The
pieces are aligned with the edges of the chocolate, and they are arranged in N
rows and M columns, for a total of N ∗M pieces. Each piece has one or more
raisins on it, and no raisins lie between or across pieces.

Initially, the chocolate is one single, monolithic block. Bonny needs to cut it
into smaller and smaller blocks until finally she has cut the chocolate down to its
N ∗M individual pieces. As Bonny is very busy, she needs the help of her assistant,
Sly Peter, to do the cutting. Peter only makes straight line, end-to-end cuts and
he wants to be paid for every single cut he makes. Bonny has no money at hand,
but she has plenty of raisins left over, so she offers to pay Peter in raisins. Sly
Peter agrees to this arrangement, but under the following condition: every time
he cuts a given block of chocolate into two smaller blocks, he has to be paid as
many raisins as there are on the block he was given.



2009 August 8 - 15, Plovdiv, Bulgaria 17

Bonny wants to pay Peter as little as possible. She knows how many raisins
there are on each of the N ∗M pieces. She can choose the order in which she
gives Peter any remaining blocks, and she can also tell Peter what cuts to make
(horizontal or vertical) and where exactly to make them. Help Bonny decide how
to cut the chocolate into individual pieces, so that she pays Sly Peter as few raisins
as possible.

TASK
Write a program that, given the number of raisins on each of the individual

pieces, determines the minimum number of raisins that Bonny will have to pay
Sly Peter.

CONSTRAINTS
1 ≤ N, M ≤ 50 – The number of pieces on each side of the chocolate
1 ≤ Rk,p ≤ 1000 – The number of raisins on the piece in the kth row and
the pth column

INPUT
Your program must read from standard input the following data:
• The first line contains the integers N and M , separated by a single space.
• The next N lines describe how many raisins there are on each piece of the

chocolate. The kth of these N lines describes the kth row of the chocolate. Each
such line contains M integers separated by single spaces. The integers describe
the pieces on the corresponding row in order from left to right. The pth integer on
the kth line (among these N lines) tells you how many raisins are on the piece in
the kth row and the pth column.

OUTPUT
Your program must write to standard output a single line containing a single

integer: the minimum possible number of raisins that Bonny would have to pay
Sly Peter

GRADING
For a number of tests, worth a total of 25 points, N and M will not exceed 7.



18 21-st International Olympiad In Informatics

EXAMPLE

Sample Input Sample Output
2 3
2 7 5
1 9 5

77

One possible way (out of many) to achieve a cost of 77 is as follows:

The first cut that Bonny asks Peter to make separates the third column from
the rest of the chocolate. Bonny needs to pay Peter 29 raisins for this.

Then Bonny gives Peter the smaller of the two blocks: the one that has two
pieces with 5 raisins each, and asks Peter to cut the block in two in exchange for
10 raisins.

After this, Bonny gives Peter the largest remaining block: the one having pieces
with 2, 7, 1 and 9 raisins respectively. Bonny asks Peter to cut it horizontally,
separating the first and the second row and pays him 19 raisins.

Following this, Bonny gives Peter the top-left block, paying 9 raisins. Finally,
Bonny asks Peter to split the bottom-left block, paying 10 raisins.

The total cost to Bonny is 29 + 10 + 19 + 9 + 10 = 77 raisins. No other
cutting arrangement can get the chocolate cut into its 6 pieces at a smaller cost.



2009 August 8 - 15, Plovdiv, Bulgaria 19

TECHNICAL INFO SHEET (day 1)

These pages contain helpful information on how to avoid slow input/output
performance with C++ streams (cin / cout), how to use 64-bit data types (vari-
ables) and how to flush the output for interactive tasks. They also include reference
for what options are given to the compilers and what stack limitations are in place.

Slow Input / Output with C++ Streams

When solving tasks with very large amounts of input / output data, you may
notice that C++ programs using the cin and cout streams are much slower than
equivalent programs that use the scanf and printf functions for input and output
processing. Thus, if you are using the cin / cout streams we strongly recommend
that you switch to using scanf / printf instead. However, if you still want to use cin
/ cout, we recommend adding the following line at the beginning of your program:

ios::sync_with_stdio(false);

and also making sure that you never use endl, but use \n instead.

Please note, however, that including ios::sync_with_stdio(false) breaks
the synchrony between cin / cout and scanf / printf, so if you are using this, you
should never mix usage of cin and scanf, nor mix cout and printf.

64-bit Data Types

For some tasks you may need to deal with numbers too large to fit in 32 bits.
In these cases, you would have to use a 64-bit integer data type, such as long
long in C/C++ or int64 in Pascal. Here is some sample code that illustrates the
usage of these data types:

C/C++

int main(void) {
long long varname;
scanf("%lld", &varname);
// Do something with the varname variable
printf("%lld\n", varname);
return 0;

}



20 21-st International Olympiad In Informatics

Pascal

var
varname: Int64;

begin
read(varname);
{ Do something with the varname variable }
writeln(varname);

end.

Flushing the Output

Whenever you solve an interactive task, you always need to flush the buffer
of your output after every new line printed on the output. Here is some code to
illustrate how to do this under C, C++ and Pascal:

C or C++ with scanf / printf
fflush(stdout);

C++ with cin / cout
cout << flush;

Pascal
flush(output);

Compiler Options
The following commands will be used to compile solutions of batch and inter-

active tasks (say the task name is abc):

C
gcc -o abc abc.c -std=gnu99 -O2 -s -static -lm -x c

C++
g++ -o abc abc.cpp -O2 -s -static -lm -x c++

Pascal
fpc -O2 -XS -Sg abc.pas



2009 August 8 - 15, Plovdiv, Bulgaria 21

Stack Limitations

Whenever your program is executed through the contest system, the stack size
will only be limited by the memory limit for the corresponding task.

Task Overview Sheet (Day 1)

Archery Hiring POI Raisins
Type Batch Batch Batch Batch
Detailed Feedback Partial None Full Partial
Time Limit (per test case) 2 seconds 1.5 seconds 2 seconds 5 seconds
Memory Limit (per test case) 64 MB 64 MB 64 MB 128 MB
Points 100 100 100 100

NOTE: C++ programmers should be aware that using C++ streams (cin /
cout) may lead to I/O bottlenecks and substantially slower performance. Please
see the technical info sheet for ways to avoid this.



22 21-st International Olympiad In Informatics

Day 2

Task 2.1 GARAGE (proposed by Carl Hultquist)

A parking garage has N parking spaces, numbered from 1 to N inclusive. The
garage opens empty each morning and operates in the following way throughout
the day. Whenever a car arrives at the garage, the attendants check whether there
are any parking spaces available. If there are none, then the car waits at the
entrance until a parking space is released. If a parking space is available, or as
soon as one becomes available, the car is parked in the available parking space. If
there is more than one available parking space, the car will be parked at the space
with the smallest number. If more cars arrive while some car is waiting, they all
line up in a queue at the entrance, in the order in which they arrived. Then, when
a parking space becomes available, the first car in the queue (i.e., the one that
arrived the earliest) is parked there.

The cost of parking in dollars is the weight of the car in kilograms multiplied
by the specific rate of its parking space. The cost does not depend on how long a
car stays in the garage.

The garage operator knows that today there will be M cars coming and he
knows the order of their arrivals and departures. Help him calculate how many
dollars his revenue is going to be today.

TASK

Write a program that, given the specific rates of the parking spaces, the weights
of the cars and the order in which the cars arrive and depart, determines the total
revenue of the garage in dollars.

CONSTRAINTS

1 ≤ N ≤ 100 – The number of parking spaces
1 ≤M ≤ 2 000 – The number of cars
1 ≤ Rs ≤ 100 – The rate of parking space s in dollars per kilogram
1 ≤Wk ≤ 10 000 – The weight of car k in kilograms

INPUT

Your program must read from standard input the following data:
• The first line contains the integers N and M , separated by a space.



2009 August 8 - 15, Plovdiv, Bulgaria 23

• The next N lines describe the rates of the parking spaces. The sth of these
lines contains a single integer Rs, the rate of parking space number s in dollars
per kilogram.
• The next M lines describe the weights of the cars. The cars are numbered

from 1 to M inclusive in no particular order. The kth of these M lines contains a
single integer Wk, the weight of car k in kilograms.
• The next 2 ∗ M lines describe the arrivals and departures of all cars in

chronological order. A positive integer i indicates that car number i arrives at
the garage. A negative integer −i indicates that car number i departs from the
garage. No car will depart from the garage before it has arrived, and all cars from
1 to M inclusive will appear exactly twice in this sequence, once arriving and once
departing. Moreover, no car will depart from the garage before it has parked (i.e.,
no car will leave while waiting on the queue).

OUTPUT
Your program must write to standard output a single line containing a single

integer: the total number of dollars that will be earned by the garage operator
today.

GRADING
For a number of tests worth 40 points there will always be at least one available

parking space for every arriving car. In these cases no car will ever have to wait
for a space.



24 21-st International Olympiad In Informatics

EXAMPLES

Sample Input Sample Output
3 4
2
3
5
200
100
300
800
3
2
−3
1
4
−4
−2
−1

5300

Car number 3 goes to space number 1 and pays 300 ∗ 2 = 600 dollars.
Car number 2 goes to space number 2 and pays 100 ∗ 3 = 300 dollars.
Car number 1 goes to space number 1 (which was released by car number 3)

and pays 200 ∗ 2 = 400 dollars.
Car number 4 goes to space number 3 (the last remaining) and pays 800 ∗ 5 =

4 000 dollars.



2009 August 8 - 15, Plovdiv, Bulgaria 25

Sample Input Sample Output
2 4
5
2
100
500
1000
2000
3
1
2
4
−1
−3
−2
−4

16200

Car number 3 goes to space number 1 and pays 1 000 ∗ 5 = 5 000 dollars.
Car number 1 goes to space number 2 and pays 100 ∗ 2 = 200 dollars. Car

number 2 arrives and has to wait at the entrance.
Car number 4 arrives and has to wait at the entrance behind car number 2.
When car number 1 releases its parking space, car number 2 parks there and

pays 500 ∗ 2 = 1 000 dollars.
When car number 3 releases its parking space, car number 4 parks there and

pays 2 000 ∗ 5 = 10 000 dollars.

Task 2.2 MECHO (proposed by Carl Hultquist)

Mecho the bear has found a little treasure the bees secret honeypot, which is
full of honey! He was happily eating his newfound treasure until suddenly one bee
saw him and sounded the bee alarm. He knows that at this very moment hordes
of bees will emerge from their hives and start spreading around trying to catch
him. He knows he has to leave the honeypot and go home quickly, but the honey
is so sweet that Mecho doesnt want to leave too soon. Help Mecho determine the
latest possible moment when he can leave.

Mechos forest is represented by a square grid of N by N unit cells, whose sides
are parallel to the north-south and east-west directions. Each cell is occupied by



26 21-st International Olympiad In Informatics

a tree, by a patch of grass, by a hive or by Mechos home. Two cells are considered
adjacent if one of them is immediately to the north, south, east or west of the
other (but not on a diagonal). Mecho is a clumsy bear, so every time he makes a
step, it has to be to an adjacent cell. Mecho can only walk on grass and cannot
go through trees or hives, and he can make at most S steps per minute.

At the moment when the bee alarm is sounded, Mecho is in the grassy cell
containing the honeypot, and the bees are in every cell containing a hive (there
may be more than one hive in the forest). During each minute from this time
onwards, the following events happen in the following order:
• If Mecho is still eating honey, he decides whether to keep eating or to leave.

If he continues eating, he does not move for the whole minute.
• Otherwise, he leaves immediately and takes up to S steps through the forest

as described above. Mecho cannot take any of the honey with him, so once he has
moved he cannot eat honey again.

After Mecho is done eating or moving for the whole minute, the bees spread
one unit further across the grid, moving only into the grassy cells. Specifically, the
swarm of bees spreads into every grassy cell that is adjacent to any cell already
containing bees. Furthermore, once a cell contains bees it will always contain bees
(that is, the swarm does not move, but it grows).

In other words, the bees spread as follows: When the bee alarm is sounded,
the bees only occupy the cells where the hives are located. At the end of the
first minute, they occupy all grassy cells adjacent to hives (and still the hives
themselves). At the end of the second minute, they additionally occupy all grassy
cells adjacent to grassy cells adjacent to hives, and so on. Given enough time, the
bees will end up simultaneously occupying all grassy cells in the forest that are
within their reach.

Neither Mecho nor the bees can go outside the forest. Also, note that according
to the rules above, Mecho will always eat honey for an integer number of minutes.

The bees catch Mecho if at any point in time Mecho finds himself in a cell
occupied by bees.

TASK

Write a program that, given a map of the forest, determines the largest number
of minutes that Mecho can continue eating honey at his initial location, while still
being able to get to his home before any of the bees catch him.

CONSTRAINTS

1 ≤ N ≤ 800 – The size (side length) of the map



2009 August 8 - 15, Plovdiv, Bulgaria 27

1 ≤ S ≤ 1 000 – The maximum number of steps Mecho can take in each minute

INPUT
Your program must read from standard input the following data:
• The first line contains the integers N and S, separated by a space.
• The next N lines represent the map of the forest. Each of these lines contains

N characters with each character representing one unit cell of the grid. The
possible characters and their associated meanings are as follows:

T denotes a tree
G denotes a grassy cell
M denotes the initial location of Mecho and the honeypot, which is also a

grassy cell
D denotes the location of Mechos home, which Mecho can enter, but the bees

cannot.
H denotes the location of a hive
NOTE: It is guaranteed that the map will contain exactly one letter M , exactly

one letter D and at least one letter H. It is also guaranteed that there is a sequence
of adjacent letters G that connects Mecho to his home, as well as a sequence of
adjacent letters G that connects at least one hive to the honeypot (i.e., to Mechos
initial location). These sequences might be as short as length zero, in case Mechos
home or a hive is adjacent to Mechos initial location. Also, note that the bees
cannot pass through or fly over Mechos home. To them, it is just like a tree.

OUTPUT
Your program must write to standard output a single line containing a single

integer: the maximum possible number of minutes that Mecho can continue eating
honey at his initial location, while still being able to get home safely.

If Mecho cannot possibly reach his home before the bees catch him, the number
your program writes to standard output must be −1 instead.

GRADING
For a number of tests, worth a total of 40 points, N will not exceed 60.



28 21-st International Olympiad In Informatics

EXAMPLES

Sample Input Sample Output
7 3
TTTTTTT
TGGGGGT
TGGGGGT
MGGGGGD
TGGGGGT
TGGGGGT
THHHHHT

1

After eating honey for one minute, Mecho can take the shortest path directly
to the right and he will be home in another two minutes, safe from the bees.

Sample Input Sample Output
7 3
TTTTTTT
TGGGGGT
TGGGGGT
MGGGGGD
TGGGGGT
TGGGGGT
TGHHGGT

2

After eating honey for two minutes, Mecho can take steps →↑→ during the
third minute, then steps →→→ during the fourth minute and steps ↓→ during
the fifth minute.

Task 2.3 REGIONS (proposed by Long Fan and Richard Peng)

The United Nations Regional Development Agency (UNRDA) has a very well
defined organizational structure. It employs a total of N people, each of them
coming from one of R geographically distinct regions of the world. The employees
are numbered from 1 to N inclusive in order of seniority, with employee number 1,
the Chair, being the most senior. The regions are numbered from 1 to R inclusive
in no particular order. Every employee except for the Chair has a single supervisor.
A supervisor is always more senior than the employees he or she supervises.



2009 August 8 - 15, Plovdiv, Bulgaria 29

We say that an employee A is a manager of employee B if and only if A is Bs
supervisor or A is a manager of Bs supervisor. Thus, for example, the Chair is
a manager of every other employee. Also, clearly no two employees can be each
others managers.

Unfortunately, the United Nations Bureau of Investigations (UNBI) recently
received a number of complaints that the UNRDA has an imbalanced organiza-
tional structure that favors some regions of the world more than others. In order
to investigate the accusations, the UNBI would like to build a computer system
that would be given the supervision structure of the UNRDA and would then be
able to answer queries of the form: given two different regions r1 and r2, how
many pairs of employees e1 and e2 exist in the agency, such that employee e1

comes from region r1, employee e2 comes from region r2, and e1 is a manager of
e2. Every query has two parameters: the regions r1 and r2; and its result is a single
integer: the number of different pairs e1 and e2 that satisfy the above-mentioned
conditions.

TASK
Write a program that, given the home regions of all of the agencys employees,

as well as data on who is supervised by whom, interactively answers queries as
described above.

CONSTRAINTS
1 ≤ N ≤ 200 000 – The number of employees
1 ≤ R ≤ 25 000 – The number of regions
1 ≤ Q ≤ 200 000 – The number of queries your program will have to answer
1 ≤ Hk ≤ R – The home region of employee k (for 1 ≤ k ≤ N)
1 ≤ Sk < k – The supervisor of employee k (for 2 ≤ k ≤ N)
1 ≤ r1, r2 ≤ R – The regions inquired about in a given query

INPUT
Your program must read from standard input the following data:
• The first line contains the integers N , R and Q, in order, separated by single

spaces.
• The next N lines describe the N employees of the agency in order of seniority.

The kth of these N lines describes employee number k. The first of these lines
(i.e., the one describing the Chair) contains a single integer: the home region H1

of the Chair. Each of the other N − 1 lines contains two integers separated by a
single space: employee ks supervisor Sk, and employee ks home region Hk.



30 21-st International Olympiad In Informatics

INTERACTION
After reading the input data, your program must start alternately reading

queries from standard input and writing query results to standard output. The Q
queries must be answered one at a time; your program must send the response to
the query it has already received before it can receive the next query.

Each query is presented on a single line of standard input and consists of two
different integers separated by a single space: the two regions r1 and r2.

The response to each query must be a single line on standard output containing
a single integer: the number of pairs of UNRDA employees e1 and e2, such that
e1s home region is r1, e2s home region is r2 and e1 is a manager of e2.

NOTE: The test data will be such that the correct answer to any query given
on standard input will always be less than 1 000 000 000.

IMPORTANT NOTE: In order to interact properly with the grader, your pro-
gram needs to flush standard output after every query response. It also needs
to avoid accidentally blocking when reading standard input, as might happen for
instance when using scanf("%d\n"). Please see the technical info sheet for in-
structions on how to do this properly.

GRADING
For a number of tests, worth a total of 30 points, R will not exceed 500.
For a number of tests, worth a total of 55 points, no region will have more than

500 employees.
The tests where both of the above conditions hold are worth 15 points.
The tests where at least one of the two conditions holds are worth 70 points.



2009 August 8 - 15, Plovdiv, Bulgaria 31

EXAMPLE

Sample Input Sample Output
6 3 4
1
1 2
1 3
2 3
2 3
5 1
1 2

1 3

2 3

3 1

1 [flush standard output]

3 [flush standard output]

2 [flush standard output]

1 [flush standard output]

TESTING

If you would like to test your solution through the contest systems test interface,
the input file you provide should include both the input data and all queries, as
illustrated in the sample input above.

Task 2.4 SALESMAN (proposed by Velin Tzanov)

The traveling salesman has decided that optimally scheduling his trips on land
is an intractable computational problem, so he is moving his business to the linear
world of the Danube River. He has a very fast boat that can get him from anywhere
to anywhere along the river in no time, but unfortunately the boat has terrible fuel
consumption. It costs the salesman U dollars for every meter traveled upstream
(towards the source of the river) and D dollars for every meter traveled downstream
(away from the source of the river).

There are N trade fairs that the salesman would like to visit along the river.
Each trade fair is held for one day only. For each trade fair X, the traveling
salesman knows its date TX , measured in the number of days since he purchased
his boat. He also knows the fairs location LX , measured as the distance in meters



32 21-st International Olympiad In Informatics

from the source of the river downstream to the fair, as well as the number of dollars
MX that the salesman is going to gain if he attends this trade fair. He has to start
and end his journey at his waterfront home on the river, which is at location S,
measured also in meters downstream from the source of the river.

Help the traveling salesman choose which trade fairs to attend (if any) and in
what order, so that he may maximize his profit at the end of his travels. The
traveling salesmans total profit is defined as the sum of the dollars he gained at
the fairs he attended, minus the total sum of dollars he spent traveling up and
down the river.

Keep in mind that if trade fair A is held earlier than trade fair B, the salesman
can visit them only in this order (i.e., he cannot visit B and then visit A). However,
if two fairs are held on the same date, the salesman can visit them both in any
order. There is no limit to how many fairs the salesman can visit in a day, but
naturally he can’t visit the same fair twice and reap the gains twice. He can pass
through fairs he has already visited without gaining anything.

TASK

Write a program that, given the date, location and profitability of all fairs,
as well as the location of the traveling salesmans home and his costs of traveling,
determines the maximum possible profit he can make by the end of his journey.

CONSTRAINTS

1 ≤ N ≤ 500 000 – The number of fairs
1 ≤ D ≤ U ≤ 10 – The cost of traveling one meter upstream (U) or

downstream (D)
1 ≤ S ≤ 500 001 – The location of the salesmans home
1 ≤ Tk ≤ 500 000 – The day on which fair k is held
1 ≤ Lk ≤ 500 001 – The location of fair k
1 ≤Mk ≤ 4 000 – The number of dollars the salesman would earn if he

attends fair k

INPUT

Your program must read from standard input the following data:
• The first line contains the integers N , U , D and S, in this order, separated

by single spaces.
• The next N lines describe the N fairs in no particular order. The kth of

these N lines describes the kth fair and contains three integers separated by single



2009 August 8 - 15, Plovdiv, Bulgaria 33

spaces: the day of the fair Tk, its location Lk, and its profitability for the salesman
Mk.

NOTE: All locations given in the input will be different. That is to say, no two
fairs will happen at the same location and no fair will happen at the salesmans
home.

OUTPUT

Your program must write to standard output a single line containing a single
integer: the maximum profit the salesman can possibly make by the end of his
journey.

GRADING

For a number of tests, worth a total of 60 points, no two fairs will be held
on the same day. For a number of tests, worth a total of 40 points, none of the
numbers in the input will exceed 5 000.

The tests where both of the above conditions hold are worth 15 points.
The tests where at least one of the two conditions holds are worth 85 points.

EXAMPLE

Sample Input Sample Output
4 5 3 100
2 80 100
20 125 130
10 75 150
5 120 110

50

An optimal schedule would visit fairs 1 and 3 (the ones at locations 80 and 75).
The sequence of events and their associated profits and costs would be as follows:
• The salesman travels 20 meters upstream at a cost of 100 dollars. Profit so

far: −100
• He attends fair number 1 and earns 100. Profit so far: 0
• He travels 5 meters upstream at a cost of 25. Profit so far: -25
• He attends fair number 3 where he earns 150. Profit so far: 125
• He travels 25 meters downstream to return home at a cost of 75. Profit at

the end: 50



34 21-st International Olympiad In Informatics

TECHNICAL INFO SHEET (day 2)

These pages contain helpful information on how to avoid slow input/output
performance with C++ streams (cin / cout), how to use 64-bit data types (vari-
ables) and how to properly communicate with the grader on interactive tasks.
They also include reference for what options are given to the compilers and what
stack limitations are in place.

Slow Input / Output with C++ Streams
When solving tasks with very large amounts of input / output data, you may

notice that C++ programs using the cin and cout streams are much slower than
equivalent programs that use the scanf and printf functions for input and output
processing. Thus, if you are using the cin / cout streams we strongly recommend
that you switch to using scanf / printf instead. However, if you still want to use cin
/ cout, we recommend adding the following line at the beginning of your program:

ios::sync_with_stdio(false);

and also making sure that you never use endl, but use \n instead.
Please note, however, that including ios::sync_with_stdio(false) breaks

the synchrony between cin / cout and scanf / printf, so if you are using this, you
should never mix usage of cin and scanf, nor mix cout and printf.

64-bit Data Types
For some tasks you may need to deal with numbers too large to fit in 32 bits.

In these cases, you would have to use a 64-bit integer data type, such as long
long in C/C++ or int64 in Pascal. Here is some sample code that illustrates the
usage of these data types:

C/C++

int main(void) {
long long varname;
scanf("%lld", &varname);
// Do something with the varname variable
printf("%lld\n", varname);
return 0;

}



2009 August 8 - 15, Plovdiv, Bulgaria 35

Pascal

var
varname: Int64;

begin
read(varname);
{ Do something with the varname variable }
writeln(varname);

end.

Communication with Grader on Interactive Tasks

Whenever you solve an interactive task, you always need to flush the buffer
of your output after every new line printed on the output. Here is some code to
illustrate how to do this under C, C++ and Pascal:

C or C++ with scanf / printf

fflush(stdout);

In addition, when using scanf, you must avoid reading input in a way that
blocks the execution of your program while waiting for white space on standard
input. Such blocking might happen if you use scanf with a first argument that
ends with a space or a new line. In particular, you can safely use %d as a scanf
argument, but you should NOT use %d (with a trailing space) or %d\n (with a
trailing new line).

C++ with cin / cout

cout << flush;

Pascal

flush(output);

Compiler Options

The following commands will be used to compile solutions of batch and inter-
active tasks (say the task name is abc):



36 21-st International Olympiad In Informatics

C

gcc -o abc abc.c -std=gnu99 -O2 -s -static -lm -x c

C++

g++ -o abc abc.cpp -O2 -s -static -lm -x c++

Pascal

fpc -O2 -XS -Sg abc.pas

Stack Limitations

Whenever your program is executed through the contest system, the stack size
will only be limited by the memory limit for the corresponding task.

Task Overview Sheet (Day 2)

Garage Mecho Regions Salesman
Type Batch Batch Reactive Batch
Detailed Feedback Full Partial None Partial
Time Limit (per test case) 1 second 1 second 8 seconds 3 seconds
Memory Limit (per test case) 32 MB 64 MB 128 MB 128 MB
Points 100 100 100 100

NOTE: C++ programmers should be aware that using C++ streams (cin /
cout) may lead to I/O bottlenecks and substantially slower performance. Please
see the technical info sheet for ways to avoid this.



2009 August 8 - 15, Plovdiv, Bulgaria 37

SOLUTIONS

0.1 Area

The area of a rectangle with sides Ak and Bk is Ak × Bk, so we simply need
to add these products up for each of the rectangles.

As noted in the problem statement, this problem was intended purely to get
contestants to try out the 64-bit integer types in their chosen languages. The only
thing one must keep in mind is that multiplying two 32-bit values will yield a
32-bit result, even if assigned to a 64-bit variable. The safest thing to do is to use
64-bit variables throughout.

0.2 Hill

First we make an observation: starting at any point in the grid, we can “walk
uphill” until reaching a cell with no adjacent higher cells, which is a hill. Fur-
thermore, if we start from a cell with height h inside a region bounded entirely by
cells with height less than h (or by the boundaries of the entire grid), then this
walk cannot leave this region, and hence we know that a hill must exist inside this
region.

We start the algorithm knowing that somewhere in the entire grid we have a
hill. The algorithm then repeatedly finds smaller and smaller rectangles known
to contain hills. At each step of the algorithm, we will have a rectangle with the
following properties:

1. The highest cell seen so far falls inside this rectangle1.

2. The rectangle is bounded by cells strictly lower than this highest cell, or by
the boundaries of the original grid.

Although we do not actually perform an uphill walk, the property noted above
guarantees that this rectangle will contain a hill. If the rectangle is 1× 1, then it

1At the start of the algorithm, we have not seen any cells, but this turns out not to be very
important.



38 21-st International Olympiad In Informatics

consists of just a cell which is a hill, and the problem is finished. Otherwise, we
can produce a smaller rectangle as follows.

First, use the laser scanner on every cell in a line that cuts the rectangle in
half (either horizontally or vertically, whichever will use the fewest scans). Let H
be the highest cell that has been seen so far (including the cells that have just
been scanned). Now if H does not lie on the cut, then it falls into one half of the
rectangle. This half then satisfies the properties above, and we have successfully
reduced the size of the rectangle. If H lies on the cut, then some additional work
is required. Scan the cells immediately adjacent to H that have not yet been
scanned, and let H ′ be the new highest cell seen. If H ′ = H then H is a hill
(since we have scanned all its neighbours), and we can immediately terminate.
Otherwise, H ′ does not lie on the cut, and we can proceed to select one half of the
rectangle as before.

By repeatedly finding smaller rectangles known to contain a hill, we must
eventually find a 1 × 1 rectangle and the problem is solved. An upper bound on
the number of scans required is

1002 + 502 + 502 + 252 + 252 + · · ·+ 5 + 5 + 3 = 3023

Slightly tighter or looser bounds can be obtained depending on exact details of
the implementation, but this is not important as full points are awarded as long
as the number of scans is at most 3050.

0.3 Museum

To solve this problem, we start by observing that if we have three vases with
heights A, B and C, such that either A is odd and C even, or A even and C odd,
then no matter what B is these three vases will not violate the condition of the
exhibition organisers. This is because A + C must therefore be odd, and so is not
divisible by two, meaning that it is impossible for B to be the average of A and
C.

We therefore start by arranging the vases such that we place all the even vases
first, and all the odd vases second. This gives an arrangement that looks like this:

E1 E2 . . . Ep O1 O2 . . . Oq

where E1, E2, . . . , Ep are the even heights in some order, and O1, O2, . . . , Oq are
the odd heights in some order.

Now consider any heights A, B,C which violate the organisers’ requirements.
By the observations above, either A and C are both even (in which case B is even,



2009 August 8 - 15, Plovdiv, Bulgaria 39

since it appears between A and C and all the even values are grouped together),
or A and C are both odd (in which case B is also odd). In other words, we
can consider the problems of ordering the even numbers and the odd numbers
separately.

Now suppose that a1, a2, . . . , ap is a permutation of the heights 1, 2, . . . , p which
satisfies the organisers’ requirements (this is a smaller instance of the problem, so it
can be solved by divide-and-conquer). Then simply assigning Ei = 2ai will satisfy
the requirements on the even values. Similarly, given a permutation b1, b2, . . . , bq of
the heights 1, 2, . . . , q which satisfies the requirements, we can assign Oi = 2bi−1.

Examining the properties of the resulting sequence gives another approach to
generating the same solution. We can write all the heights in binary form, and
then sort them according to the reverse of their binary form. This sorts first on
the least significant bit (i.e., on whether they are odd or even), then the next least
significant bit and so on. To prove that this solution is valid, note that if B is the
average of A and C, then at the least significant bit that A and B first differ, A
and C must have the same value for that bit, placing A and C in a separate group
from B when sorting on that bit.

1.1 Archery

The proofs below are very verbose and long-winded, but the ideas behind the
algorithms are not all that complicated. The steps can be summarized as:

1. A trivial solution (trying all possibilities and simulating the tournament for
each one) gives an O(N2R) algorithm.

2. One can observe that after no more than 2N rounds, the tournament becomes
cyclical with all positions repeating every N rounds. This allows the trivial
algorithm to be sped up to O(N3).

3. One can optimize the simulation of the tournament (once we have chosen an
initial position) from O(N2) to O(N). This is the most complicated part of
the solution. The key here is that we are only interested in our own position
at the end, not in everyone else’s.

4. Once you have a subroutine that tells you where you will end up given where
you start, you can use it with a modified binary search, improving the O(N2)
algorithm to O(N log N); or alternatively, improving the O(N3) algorithm
to O(N2 log N).



40 21-st International Olympiad In Informatics

5. The last two algorithms above also have slower versions (O(N2 log N) and
O(N log N log N)) if you try to solve the problem by also keeping track of
other archers’ positions, not just your own.

Optimising to O(N3)

A trivial solution is to try all possible starting positions and simulate the
tournament for each round, giving complexity of O(N2R). We now show how this
can be reduced to O(N3).

Consider the archers numbered from N + 2 to 2N . Let’s call them the weak
archers.

Theorem 1. After enough rounds (no more than 2N) the weak archers will occupy
the targets numbered 2 to N , one such archer on each target, and will stay there
until the end of the tournament.

Proof. After N −1 rounds, archer number 1 will be on target 1 and will stay there
until the end. From this point on, if we consider the set of N archers consisting
of archer number 1 plus the N − 1 weak archers (let us call this the weak+1 set),
and if we imagine the targets arranged in a circle (1 to N and then again 1), we
have the following scenario:

• When an archer from the weak+1 set competes with an archer outside of
weak+1, then the weak+1 archer will stay on the target and the other archer
will move.

• When two archers belonging to the weak+1 set compete against each other,
one of them will stay and the other will move to the target on his left.

Lemma 1. Within N rounds after archer number 1 has arrived on target 1, every
target will have at least one weak+1 member on it.

Proof. Suppose the above is not true. We know that once a target is occupied by a
weak+1 member, then it will always be occupied by at least one (because weak+1
members never move out of their target unless there is another weak+1 archer to
replace them there). Thus if Lemma 1 is false, there must exist a target that is
never occupied by a weak+1 member (within the N rounds). Let’s call this target
A. If A is never occupied by a weak+1 archer, then the target to the left of A
(let us call it B) would have at most one such archer within one round and would
remain this way. Then within two rounds the target to the left of B would have



2009 August 8 - 15, Plovdiv, Bulgaria 41

at most one weak+1 archer, and within three rounds the next target to the left
would have at most one such archer. Continuing around the circle, within N − 1
rounds the target to the right of A would have at most one weak+1 archer. Thus
within N − 1 rounds all targets except A would have at most one weak+1 archer.
But since there are N such archers and N targets, this means that A must have
at least one weak+1 archer. Since this contradicts our supposition that A remains
free of weak+1 archer for N rounds, this proves Lemma 1.

Now that we know every target has at least one weak+1 archer within 2N
rounds from the start of the competition, and since we know that once a target has
such an archer it never ceases to have at least one, we have proved Theorem 1.

Now consider all archers that don’t belong to weak+1. If we have one weak+1
archer on every target, this also means we also have one non-weak+1 archer on
every target. Since under this scenario the weak+1 archers always stay where they
are, this means the archers numbered 2 to N+1 will cyclically rotate around the
N targets, periodically repeating their positions after every N rounds.

This means that if we replace R by R′ = 2N + (R mod N) we would get an
identical answer, since the outcome of the tournament after R rounds would be
identical to the outcome after R′ rounds (remember that R ≥ 2N).

The above means that we can easily improve our O(N2R) algorithm to O(N3).

Optimising to O(N2)

Currently, when we choose a starting position and we simulate what happens
after R′ rounds, we do O(N2) calculations per starting position. We can reduce
the complexity of this part to O(N) in the following way.

Observe that there are three types of archers: ones that are better than us,
which we’ll call the black archers; ones that are worse than us, which we’ll call
the white archers; and ourself (a single archer) which we’ll denote as the gray
archer. In order to solve our problem, we need not make any distinctions between
archers of the same colour, as it is irrelevant to the final outcome. If two archers
of the same colour compete against each other, it does not matter to us which one
prevails (i.e., it is not going to impact the gray archer’s final position). And we
know that whenever two archers of different colours compete against each other,
the archer of the darker colour wins.

Now there are three different cases which we’ll handle separately.

Case 1 There are no black archers. This means we are the best archer and in
this case it is trivial to show that the optimal target to start on is target N .



42 21-st International Olympiad In Informatics

Case 2 There is at least one black archer, but no more than N . This means that
our rank is between 2 and N + 1, which means we are part of the group of archers
that eventually ends up circling the targets periodically. In this case, it is notable
that we do not need to simulate the full tournament, but only what happens on
target 1. If we know who competes on target 1 every round, then just observing
when between rounds 2N and 3N the gray archer gets to compete against archer
number 1 will tell us where the gray archer will finish the tournament (which is all
that we are interested in). We will track what happens on target number 1 using
the following algorithm:

We assign each archer i a number Pi, which informally speaking indicates the
earliest possible round where i might potentially compete on target 1. Initially
each archer’s P number equals his original target number. Then we simulate each
round of the tournament with the following procedure:

1. We determine who is competing on target 1. The first archer there is clearly
the winner on target 1 from the previous round (or initially the leftmost
archer). We determine his opponent in the following way. We take all archers
with P number less than or equal to the number of the current round. The
best archer among them will now be competing on target 1 (the proof of
why this is correct is further below).

2. We compare these two archers and assign the loser a P value equal to the
number of the current (just passed) round plus N . This is the earliest round
when we might potentially see this archer back on target 1.

Now let us prove that the above is correct. We will denote with Aj the archer who
is competing on target 1 on round j, but who was competing on target 2 on round
j−1. Every archer i has a value Pi that if he were to win every single contest since
getting that Pi value, he would end up being APi

. Now let’s look at the archer
selected by our algorithm to be Aj (for some round j). We will denote him by W .
Let S = j − PW . If S is zero, this means that W didn’t have the opportunity to
become Aj−1 even if he were to win all his contests. Hence, in this cycle W never
met Aj−1 (or any of the earlier A’s). Since W never met these archers and since
he is better than everybody else who is in the running for Aj , this means that he
never lost in this cycle (until he got to target 1 at least), which means he truly is
Aj (i.e., our algorithm is correct in this case).

If S is greater than zero, this means that W had the opportunity to become
Aj−1, but lost it. This means he competed directly with Aj−1 because the latter
was the only candidate for Aj−1 that was better than W 2. Now if W competed

2This is true because by our algorithm every candidate for Aj−1 automatically becomes a



2009 August 8 - 15, Plovdiv, Bulgaria 43

with Aj−1 and if he is better than every other Aj candidate, this means that after
their meeting W was always “on the heels” of Aj−1: either on the same target, or
on the one immediately to the right. This means that when Aj−1 reached target
1 (which is in round j − 1), W was on target 2. Since by definition he was better
than the other archer on target 2, this means he was indeed the one to reach target
1 on round j.

Now that our algorithm for keeping track of target 1 is proved correct, we can
analyze its time complexity. Since we make no distinction between same-coloured
archers, we can represent any set of archers by just three numbers: the number
of white, gray and black archers in that set. This allows us to execute every step
of the algorithm (i.e., every round of simulation) in constant time, because all we
have to do is determine the colour of the best archer in a set of candidates and
then add to that set only one or two new archers (those whose P value equals
the number of the next round). Since we only need to simulate up to round 3N ,
and we are not interested in P values above 3N , we can implement our simulation
algorithm in O(N) time and space.

Case 3 There are more than N black archers. This means our number is more
than N + 1, which means that we are one of the archers that eventually ends up
standing on the same target indefinitely. We only need to determine which target
that is.

We already showed that once archer 1 arrives on target 1, all that the weak+1
archers do is push each other around the targets until they settle on a different
target each. Since our number is greater than N + 1, this means that all white
and gray archers belong to the weak set. Thus all we need to do is simulate how
the white and gray archers push each other around. We start at target 1 where we
know no white/gray archer would be allowed to stay. Then we attempt to count
how many white/gray archers end up getting “pushed” around the circle after
every target. Initially the white/gray archers pushed from 1 to N would be those
that were initially at target 1 (note that our count is still a lower bound; later on
we may find out there were even more white/gray archers pushed from target 1).
Then we move to target N . We add any white/gray archers that start there to
the ones we transferred from target 1 and we leave one of the combined set there
(we always leave a white one, if we have one; if not, we leave the gray; if the set is
empty, then we obviously do not leave anyone and let the black archers have this

candidate for Aj , except for the actual Aj−1 — so if W was an Aj−1 candidate, but did not
succeed and is now the best among the Aj candidates, he must have been second to Aj−1 among
the Aj−1 candidates.



44 21-st International Olympiad In Informatics

spot). We keep going around the circle from N to N − 1, to N − 2, etc. On every
target we “pick up” any white/gray archers and we leave one of those we have
picked up either earlier or now. Eventually we get to target 1 and if we happen to
have any white/gray archers pushed to target 1, we just transfer them to target
N and keep going with the same procedure. The second time we return to target
1 we certainly will not have any more white/gray archers to push around, because
by Theorem 1 we know that in 2N rounds every white or gray archer would have
settled on a target. This algorithm clearly runs in linear time and space for the
same reasons as the algorithm in Case 2 above. It is also correct because we only
move around white/gray archers when necessary (i.e., when they would end up on
the same target with another white/gray archer or on target 1) and we make sure
that in the end every white/gray archer would have settled somewhere where he
can remain undisturbed until the end of the tournament.

The optimization of the tournament simulation from O(N2) to O(N) described
above improves our solution to the whole problem from O(N3) to O(N2).

Optimising to O(N log N)

The last optimization that we use to bring the complexity of our algorithm
down to O(N log N) is based on the well-known technique of binary search. The
efficient tournament simulation algorithms described above can easily be modified
to also tell us how many times the gray archer moves from target 1 to target N
(denoted by T ). Combining this information with the final position of the gray
archer (denoted X) allows us to view the final position on a linear (as opposed to
circular) scale. If we describe the outcome of a simulation as being the number
X − N × T we can think of every transfer of the gray archer from one target to
another as decrementing the outcome by one. Then if we look at the simulation
algorithms described above, we can observe that if the starting position is higher,
then the final outcome can never be lower. For example if you choose to start with
a larger P value this can never get you further ahead (on the linear scale, not the
circular) than if you had chosen a smaller initial P value.

Given this monotonic relationship between the starting position and the final
outcome of a tournament, can find the optimal starting position as follows:

1. Measure the outcome of starting on target 1.

2. Measure the outcome of starting on target N .

3. For each multiple of N in this range, use standard binary search to find
the smallest possible ending position strictly greater than this multiple (and
hence the closest to target 1 for a particular number of wrap-arounds).



2009 August 8 - 15, Plovdiv, Bulgaria 45

4. Of the starting positions found above, pick the best.

Since there are only O(N) rounds being considered, the range to search is O(N)
and hence only O(1) binary searches are required. Each such binary search requires
O(log N) starting positions to be tested, giving a time complexity of O(N log N).

Additional notes

Finally, we should note that the efficient simulation algorithms described above
(which ignore distinctions between same-coloured archers and work in O(N) time
per simulation) can be implemented in a way that does distinguish between the
different black or white archers, using binary heaps or other similar data structures.
This would give a final algorithm of complexity O(N2 log N) or O(N log N log N),
depending on whether one also uses the binary search. One can also achieve a
time complexity of O(N2 log N) or O(RN log N) by applying the binary search
technique without optimizing the simulation.

It is also possible to solve the problem in linear time, but this is very difficult
and left as an exercise to the reader. An O(N log N) solution is sufficient to receive
a full score.

1.2 Hiring

Each worker k is described by two numbers: his minimum salary Sk and his
qualification Qk.

Imagine that we already picked a set K of workers we want to hire. How do
we compute the total amount of money we need to pay them?

According to the problem statement, the salaries must be proportional to the
qualification levels. Hence, there must be some unit salary u such that each
employee k ∈ K will be paid u · Qk dollars. However, each employee’s salary
must be at least as large as his minimum salary. Therefore, u must be large
enough to guarantee that for each k ∈ K we have u ·Qk ≥ Sk.

For more clarity, we can rewrite the last condition as follows: For each k ∈ K
we must have u ≥ Sk/Qk. Let us label Sk/Qk as Uk — the minimum unit cost at
which worker k can be employed. We also want to pay as little as possible, hence
we want to pick the smallest u that satisfies all the conditions. Therefore we get:

u = max
k∈K

Uk.

Note that this means that the unit salary is determined by a single employee
in K — the one with the largest value of Uk.



46 21-st International Olympiad In Informatics

We just showed that for any set of workers K (therefore also for the optimal
set) the unit salary u is equal to the value Uk of one of the workers in K. This
means that there are only O(N) possible values of u.

Now imagine that we start constructing the optimal set of workers K by picking
the unit salary u. Once we pick u, we know that we may hire only those workers
k for which Uk ≤ u. But how do we determine which of them to hire?

This is easy: if we hire a worker with qualification Qk, we will have to pay him
u · Qk dollars. In order to maximize the number of workers we can afford (and
minimize the cost at which we do so), we clearly want to hire the least-qualified
workers.

Hence, we can compute the best solution for a given unit cost u by finding all
the workers that we may hire, ordering them by qualification, and then greedily
picking them one by one (starting from the least qualified) while we can still afford
to pay them.

This gives us an O(N2 log N) solution. The solution can easily be improved
to O(N2), as we can sort the workers according to their qualification once in the
beginning, and then each possible unit cost u can be tried in O(N).

Finally, we’ll show how to improve the above algorithm to O(N log N). We’ll
start by ordering all workers according to the value Uk in ascending order, and we
label the workers k1, k2, . . . , kN in this order.

In order to find the optimum set of workers, we’ll do exactly the same as in
the previous algorithm, only in a more efficient way.

Let Z(m) be the following question: “What is the optimal subset of {k1, . . . , km},
given that the unit salary is Ukm

= Skm
/Qkm

?”
From the discussion above it follows that the optimal solution has to be the

answer to a question Z(m) for some m. Hence all we need to do is to answer these
N questions.

The inefficient part of the previous solution lies in the fact that for each m we
were doing the computation all over again. We can now note that we do not have
to do this — we may compute the answer to Z(m + 1) from the answer to Z(m),
for each m.

Assume that we already know the optimal answer to Z(m) for some m. We
will store the workers we picked in a priority queue Q ordered according to their
qualification, with more qualified workers having higher priority.

Now we want to add the worker km+1. His qualification level may make him a
better candidate than some of the workers we have already processed. We add him
into the priority queue Q. Q now contains all workers we need to consider when



2009 August 8 - 15, Plovdiv, Bulgaria 47

looking for the current optimal solution, because if a worker had a qualification
too large to be in the optimal solution for m, we will never want to use him again.
This holds because the unit cost never decreases and the pool of workers only
grows, so the cost of employing a worker together with all available less-qualified
workers will only go up.

However, Q may still differ from the optimal answer to Z(k + 1), because the
cost of paying all the workers in Q might exceed the budget W . There are two
reasons for this: first, when adding the worker km+1 the current unit salary u may
have increased. And second, even if it stayed the same, we added another worker,
and this alone could make the total salary of the chosen workers greater than W .

Hence, we now may need to adjust the set of chosen workers by repeatedly
throwing away the most qualified one, until we can afford to pay them all. And
this is where the priority queue comes in handy.

To summarize, the 100-point solution we just derived looks as follows: first,
order the workers according to the unit salary they enforce. Then, process the
workers in the order computed in step 1. Keep the currently optimal set of workers
in a priority queue Q, and keep an additional variable T equal to the sum of
qualifications of all workers in Q. For each worker k, we first add him into Q (and
update T accordingly), and then we throw away the largest elements of Q while
we cannot afford to pay them all — that is, while T ·Skm

/Qkm
exceeds the amount

of money we have.
Once we are finished, we know the numeric parameters of the optimal solution

– the optimal number of workers, the minimum cost to hire that many workers,
and the number f of the worker for which we found it. To actually construct the
solution, it is easiest to start the process once again from the beginning, and stop
after processing f workers.

The first step (sorting) can be done in O(N log N).
In the second step (finding the optimal number of workers and the cost of hiring

them), for each worker we insert his qualification into Q once, and we remove it
from Q at most once. Hence there are at most 2N operations with the priority
queue, and each of those can be done in O(log N) (e.g., if the priority queue is
implemented as a binary heap).

The third step (constructing one optimal set of workers) takes at most as long
as the second step.

Therefore the total time complexity of this solution is O(N log N).

Alternative solution Instead of iterating m upwards, it is also possible to
iterate it downwards. Suppose that P is the optimal subset of {k1, . . . , km} with



48 21-st International Olympiad In Informatics

u = Ukm , and we wish to modify P to find the optimal subset of {k1, . . . , km−1}
with u = Ukm−1 . Firstly, we must remove km from Q if it is currently present.
By potentially having reduced u and/or removed a worker, we may have freed up
more money to hire workers. But which workers should we hire?

Clearly we cannot hire any workers that we are already employing. Also, the
only reason we ever remove a worker k from P is because u fell below Uk, and since
u only decreases that worker can never be hired again. Hence, we can maintain a
simple queue of workers, ordered by qualification, and just hire the next available
worker until there is not enough money to do so. It is also necessary to remove
workers from this queue when u decreases, but this can be achieved by flagging
workers as unemployable and skipping over them.

Each worker can be added to the optimal set at most once, and removed from
the optimal set at most once. Each of these steps requires only constant time, so
the core of this algorithm requires O(N) time. However, the initial sorting still
requires O(N log N) time.

1.3 POI

This problem is intended as a straight-forward implementation exercise. After
the data is loaded from the file, a first pass over it can be used to count the number
of people not solving each task (and hence the number of points assigned to each
task). A second pass then suffices to determine, for each contestant, the number
of tasks solved and the score.

It is not necessary to completely determine the final ranking: Philip’s rank is
simply the number of contestants that appear before him in the ranking, plus one.
This can be determined by comparing each contestant to Philip. A contestant C
will appear ahead of Philip in the ranking if and only if

• C has a higher score than Philip; or

• C has the same score as Philip, but has solved more tasks; or

• C has the same score as Philip and has solved the same number of tasks, but
has a lower ID.

1.4 Raisins

At any moment during the cutting, we have a set of independent sub-problems
— blocks of chocolate. If we find the optimal solution for each of the blocks,



2009 August 8 - 15, Plovdiv, Bulgaria 49

together we get the optimal solution for the whole chocolate. This clearly hints at
a dynamic programming solution.

Each sub-problem we may encounter corresponds to a rectangular part of the
chocolate, and it can be described by four coordinates: specifically, two x and two
y coordinates — the coordinates of its upper left and lower right corner. Hence
we have O(N4) sub-problems to solve.

Now to solve a given sub-problem, we have to try all possible cuts. There are
O(N) possible cuts to try — at most N − 1 horizontal and N − 1 vertical ones.
Each possible cut gives us two new, smaller sub-problems we solve recursively.
Obviously, the recursion stops as soon as we reach a 1× 1 block.

Assume that someone has given us a function S(x1, y1, x2, y2) that returns the
number of raisins in the rectangle given by coordinates (x1, y1) and (x2, y2) in
constant time.

Using this function we can solve the entire problem in O(N5). We will use
recursion with memoization. Given any of the O(N4) sub-problems, first check
the memoization table to see whether we have computed it already. If yes, simply
return the previously computed value. Otherwise, proceed as follows: The cost of
the first cut is S(x1, y1, x2, y2), which we have supposed can be computed in O(1)
time. For each possible placement of the first cut, recursively determine the cost
of the remaining cuts in each sub-problem, and pick the optimal choice, storing
the answer in the memoization table.



50 21-st International Olympiad In Informatics

We are only missing one piece of the puzzle: the function S. All possible values
can easily be precomputed in O(N4) and stored in an array.

Alternatively, we can use two-dimensional prefix sums: let A be the input
array, and let Bx,y =

∑
i<x

∑
j<y Ai,j . The values B are called two-dimensional

prefix sums. They can be computed using the formula

∀x, y > 0 : Bx,y = Bx−1,y + Bx,y−1 −Bx−1,y−1 + Ax−1,y−1.

Having the two-dimensional prefix sums, we can compute the sum in any rect-
angle, using a similar formula. The sum in the rectangle with corners (x1, y1) and
(x2, y2) is

S(x1, y1, x2, y2) = Bx2,y2 −Bx1,y2 −Bx2,y1 + Bx1,y1 .

2.1 Garage

The problem is essentially a straight-forward simulation, but the data struc-
tures required are not completely trivial. A simple implementation that does not
require any kind of data structure beyond a fixed-size array will keep track of:

• for each car, its state (absent, in the queue, or parked), its parking space (if
parked), and its arrival time (if in the queue);

• for each parking space, whether there is a car parked there.

Now one can process the input events one at a time. When a car arrives, loop
over all parking spaces to find the first empty one. If one is found, park the car
there. Otherwise, the car will have to go into the queue — so record its arrival
time.

When a car leaves the garage, it will be replaced by the car at the front of the
queue (if any). Loop over all cars to find the car that arrived earliest and is still
in the queue. If one is found, park it in the parking space that has just been freed
up, and mark it as no longer in the queue.

This solution runs in O(M2 + MN) time. This can be improved: keeping the
queue in a separate array reduces this to O(MN), and also keeping the avail-
able parking spaces in a binary heap reduces it to O(M log N). However, these
optimisations are not necessary to receive a full score.



2009 August 8 - 15, Plovdiv, Bulgaria 51

2.2 Mecho

Solution 1

Firstly, working with fractional amounts of time is tricky, so we will measure
time in units of 1

S seconds — let’s call them ticks. Bees take S ticks to move from
one cell to the next, while Mecho takes one tick.

Let us try to solve an easier problem first. Suppose we know when Mecho
leaves the honey: can he get home safely? If we can solve this problem, then we
can use it inside a binary search to find the last moment at which he can leave.

Mecho’s moves will depend on the bees, but the bees’ moves are fixed, so let
us deal with the bees first. A standard breadth-first search will tell us when the
bees reach each grassy cell (this just means simulating the spread of the bees over
time).

Next, we can perform a similar breadth-first search for Mecho to answer the
question “How soon (if at all) can Mecho reach each cell?” This can be imple-
mented almost exactly as for the bees, except that one must exclude any steps
that would have Mecho move to a cell where he would immediately be caught.

These breadth-first searches can each be implemented in O(N2) time. The
problem statement guarantees that Mecho will eventually be caught if he stays
with the honey, it takes O(N2) seconds for the bees to cover all the cells they
can reach, and we are only interested in integer numbers of seconds in the binary
search. Thus, the range of values explored by the binary search is O(N2) and
hence the time complexity of this solution is O(N2 log N).

Solution 2

Instead of using a binary search, we can use a more complicated method to
directly determine the optimal time to leave any cell. The bees are processed as
in the first solution. However, instead of working from the honey towards Mecho’s
home, we start from his home. Since he is safe in his home, there is no limit on
how late he can arrive there.

Now suppose we know that for some cell Y , Mecho must leave no later than t
ticks (from the time the alarm went off) and still make it home safely. If X is a
neighbouring cell of Y , what is the latest time Mecho can leave cell X to safely
make it home via Y ? Clearly t− 1 is an upper bound, otherwise he will reach Y
too late. However, he must also leave Y before the bees get there. The latest he
can stay will be just the minimum of the two constraints.



52 21-st International Olympiad In Informatics

One can now do a priority-first search: simulate backwards in time, keeping
track of the latest time to leave each cell (keeping in mind that X has other
neighbours, and it might be better to leave via those than via Y ).

The time complexity of this solution depends on the priority queue used to
order cells by leaving time. A binary heap gives an O(N2 log N) implementation,
and this is sufficient for a full score. However, it can be shown that the number
of different priorities that are in the priority queue at any one time is O(1), which
makes an O(N2) solution possible.

2.3 Regions

Although the employees are already assigned numbers in the input, the num-
bers can be reassigned in a way that makes them more useful. The supervisor
relationships clearly organise the employees into a tree. Assign the new employee
numbers in a pre-order walk of the tree3. Figure shows an example of such a
numbering.

A useful property of this numbering is that all the employees in a sub-tree
have sequential numbers. For a given employee e, let [e] be the range of employee
numbers managed by e. Notice that for a region, we can construct an ordered
array of all the interval end-points for that region, and a list of all employees in
that region. This can be done during the assignment of numbers in linear time.

Now let us consider how to answer queries (r1, r2). Let the sizes of the regions
be S1 and S2 respectively. Given this data structure, a natural solution is to
consider every pair of employees (e1, e2) from these regions and check whether e2

lies in the interval [e1]. However, this will take O(S1S2) time per query, which we
can improve upon.

The interval end-points for region r1 divide the integers into contiguous blocks.
All employees in the same block have the same managers from r1, and we can
precompute the number of such managers for each such block. This gives us a
faster way to answer queries. Rather than comparing every employee in r2 with
every block for r1, we can observe that both are ordered by employee ID. Thus,
one can maintain an index into each list, and in each step advance whichever
index is lagging behind the other. Since each index traverses a list once, this takes
O(S1 + S2) time.

3A pre-order walk of a tree first processes the root of that tree, then recursively processes
each sub-tree in turn.



2009 August 8 - 15, Plovdiv, Bulgaria 53

An example of numbering employees by a pre-order walk. The bottom numbers
indicate the range of employee numbers in each sub-tree.

Using just this query mechanism can still take O(NQ) time, because all the
queries might involve large regions. However, it is sufficient to earn the points for
the tests where no region has more than 500 employees.

Precomputing queries

In the query algorithm above, it is also possible to replace the list of employees
in r2 with the entire list of employees, and thus compute the answer to all queries
for a particular r1. This still requires only a single pass over the blocks for r1,
so it takes O(N) time to produce all the answers for a particular r1. Similarly,
one can iterate over all interval end-points while fixing r2, giving all answers for a
particular r2.

This allows all possible queries to be pre-computed in O(RN) time and O(R2)
memory. This is sufficient to earn the points for the tests where R ≤ 500.



54 21-st International Olympiad In Informatics

This algorithm is too slow and uses too much memory to solve all the tests.
However, it is not necessary to precompute all answers, just the most expen-
sive ones. We will precompute the answers involving regions with size at least c.
There are obviously at most N/c such regions, so this will take O(N2/c) time and
O(RN/c) memory. The remaining queries involve only small regions, so they can
be answered in O(Qc) time. Choosing c =

√
N gives O(N

√
N + Q

√
N) time and

O(R
√

N) memory, which is sufficient for a full score.

Caching queries

As an alternative to precomputation, one can cache the results of all queries,
and take the answer from the cache if the same query is made again. Let Q′ be
the number of unique queries. The cost of maintaining the query cache depends
on the data structure used; a balanced binary tree gives O(Q log N) overhead for
this.

Combining the cache with the O(S1 +S2) algorithm is sufficient to achieve the
points for tests that have either no more than 500 employees per region (because
this is the case even without the cache), as well as the cases with no more than
500 regions (since the total cost of all distinct queries together is O(RN)).

To achieve a full score with a cache rather than precomputation, one must
use a better method for answering queries. Suppose we have a block in r1, and
wish to find all matching employees from r2. While we have previously relied on a
linear walk over the employees from r2, we can instead use a binary search to find
the start and end of the range in O(log S2) time. This allows the entire query to
be answered in O(S1 log S2) time. A similar transformation (binary searching the
blocks for each employee in r2) gives O(S2 log S1) time for each query.

Now when answering each query, choose the best out of the O(S1 log S2),
O(S2 log S1) and O(S1 + S2) query mechanisms. To establish an upper bound
on run-time, we will make assumptions about which method is chosen to answer
particular types of queries.

Again, divide the problem into large regions with at least c employees and the
rest. For queries involving one of the large regions, use the O(A log B) algorithm
(where A and B are respectively the smaller and larger of S1 and S2). The caching
of queries ensures that this contributes no more than O(N2 log N/c) time. For the
remaining queries, use an O(S1 +S2) algorithm. The smaller regions have at most
c employees, so this contributes O(Qc) time.

The optimal value of c occurs when the two parts account for equal time. Solv-
ing for this optimal c gives a bound of O(N

√
Q′ log N) for answering non-duplicate



2009 August 8 - 15, Plovdiv, Bulgaria 55

queries; combined with the cost for the query cache, this gives an algorithm with
time complexity O(N

√
Q′ log N + Q log N) and memory complexity O(N + Q′).

The time bound is marginally worse than for the first solution, but in prac-
tical terms this solution runs at about the same speed and uses significantly less
memory.

2.4 Salesman

We’ll start by considering only the case where no two fairs occur on the same
day. Later we’ll show how to modify our algorithm to incorporate fairs that occur
on the same day.

The first polynomial solution

First we’ll describe a fairly standard dynamic programming algorithm. We
order the fairs according to the day when they take place. For each fair i we will
compute the best profit Pi we can achieve immediately after visiting this fair.

To avoid special cases, we’ll add dummy fairs 0 and N + 1 which both take
place at the salesman’s home, fair 0 being the first and fair N + 1 the last of all
fairs. We can immediately tell that P0 = 0 and that PN+1 is the answer we are
supposed to compute.

The values P1 to PN+1 can all be computed in order, using the same observa-
tion: we have to arrive from some fair, and we may pick which one it is.

Let cost(x, y) be the cost of travelling from point x to point y on the river. If
x ≤ y, we have cost(x, y) = (y − x)D, otherwise we have cost(x, y) = (x− y)U .

We can then write:

∀i ∈ {1, . . . , N + 1} : Px = max
0≤j<i

(Pj − cost(Lj , Li)) + Mi

(Explanation: To compute Pi we pick the number j of the fair we visited
immediately before fair i. Immediately after fair j the best profit we could have
was Pj . We then have to travel to the location of the current fair, which costs
us cost(Lj , Li), and finally we visit fair i for a profit Mi. To obtain the largest
possible Pi we take the maximum over all possible choices of j.)

The time complexity of this algorithm is O(N2), which is sufficient to solve the
cases where all the input values are at most 5,000.



56 21-st International Olympiad In Informatics

An improved solution

We will now improve the previous algorithm. Note that the profit Mi from
visiting fair i is the same for all choices of j. Thus, the optimal choice of j
depends on the profits P0, . . . , Pi−1, the locations L0, . . . , Li−1, and the location
Li of the current fair.

We can divide the fairs 0 to i− 1 into two groups: those upstream of Li, and
those downstream. We can now divide our problem “find the optimal j” into two
subparts: “find the optimal choice for the previous fair upstream” and “find the
optimal choice for the previous fair downstream”.

Consider locating the optimal previous fair upstream of Li. If we were to change
the value Li (in such a way that it does not change which other fairs are upstream
of fair i), can it influence our choice? No, it can not. If we, for example, increase
Li by ∆, this means that for each of the upstream fairs the cost of travelling to
fair i increases by the same amount: D∆. Hence the optimal choice would remain
the same.

We will now show a relatively simple data structure that will allow us to locate
the optimal previous fair upstream of fair i in O(log N) time.

The data structure is commonly known as an interval tree. We can assign the
fairs new labels according to their unique positions on the river. More precisely,
let lf be the number of fairs that are upstream of fair f (including those that occur
after fair f).

Our interval tree is a complete binary tree with k levels, where k is the smallest
integer such that 2k−1 ≥ N + 2. Note that k = O(log N).

Leaves in this binary tree correspond to the fairs, and the order in which fairs
are assigned to leaves is given by the values li. That is, the leftmost leaf is the fair
closest to the river source, the second leaf is the second-closest fair, and so on.

Now note that each node in our tree corresponds to an interval of fairs — hence
the name “interval tree”. In each node of the interval tree we will store the answer
to the following question: “Let S be the set of fairs that correspond to leaves in
this subtree and were already processed. Supposing that I’m downstream from
each of them, which one is the optimal choice?”

Given this information, we can easily determine the optimal choice for the next
fair i in O(log N). And it is also easy to update the information in the tree after
fair i was processed; this too can be done in O(log N).

In our solution we will, of course, have two interval trees: one for the direction
upstream and one for the direction downstream. For each fair i, we first make two
queries to determine the best predecessor upstream and downstream, then we pick



2009 August 8 - 15, Plovdiv, Bulgaria 57

the better of those two choices, compute Pi, and finally we update both interval
trees.

Hence we process each fair in O(log N), leading to the total time complexity
O(N log N).

Another equally good solution

In this section we will show another solution with the same complexity, which
uses an “ordered set” data structure only, and can easily be implemented in C++
using the set class.

As before, we will process the fairs one by one, ordered by the day on which
they occur. Imagine a situation after we have processed some fairs. Let a and
b be two fairs that we have already processed. We say that a is covered by b if
Pa ≤ Pb − cost(Lb, La).

In human words, a is covered by b if the strategy “visit fair b last and then
move to the location of fair a” is at least as good as the strategy “visit fair a last”.

Once a fair a is covered by some other fair b, this fair will never be an optimal
predecessor for any later fair. Fair b will always (regardless of the location of the
later fair) be at least as good a choice as a.

On the other hand, if a fair is currently not covered by any other fair, there
are some locations on the river for which b would be the optimal predecessor —
at least the location Lb and its immediate surroundings. We will call such fairs
active.

In our solution we will maintain the set of currently active fairs, ordered by
their position on the river. We will use an “ordered set” data structure, most
commonly implemented as a balanced binary tree.

It can easily be shown that for each active fair f there is an interval of the
river where f is the optimal choice. These intervals are obviously disjoint (except
possibly for their endpoints), and together they cover the entire river. And as the
interval for f contains f , the intervals are in the same order as their corresponding
active fairs.

Hence whenever we are going to process a new fair i, we only have to locate
the closest active fairs upstream and downstream of i — one of these two must be
the optimal choice.

After we process the fair i and compute Pi, we have to update the set of active
fairs. Clearly, i is now active, as we computed Pi by taking the best way of getting
to Li, and then added a positive profit Mi. We add it into the set of active fairs.
But we are not done yet — i might now cover some of the previously active fairs.



58 21-st International Olympiad In Informatics

But these are easy to find: if neither of the immediate neigbours of i (in the set of
active fairs) is covered by i, we are obviously done. If some of them are covered
by i, erase them from the set and repeat the check again.

In this solution, each fair is inserted into the set of active fairs once, and is
erased from the set at most once. In addition, when processing each fair we make
one query to find the closest two active fairs. Each of these operations takes
O(log N), hence the total time complexity is O(N log N).

Multiple fairs on the same day

First of all, note that we cannot process fairs that are on the same day one by
one — because we must allow the salesman to visit them in a different order than
the one we picked.

There may be many ways in which to visit the fairs on a given day. However,
we don’t need to consider all of them, just some subset that surely contains the
optimal solution.

Suppose that we already picked some order in which to visit the fairs on a given
day. Let u and d be the fairs furthest upstream and downstream we visit. We can
then, obviously, visit all fairs between u and v as well, as we’ll surely be travelling
through their locations. And clearly to visit all of these fairs, it’s enough to travel
first to u and then from u to v, or vice versa. We will only consider such paths.

We will process each day in two phases. In the first phase, we process each fair
i separately, as if it were the only fair that day, and we determine a preliminary
value Pi — the best profit we can have after coming to fair i from some fair on a
previous day.

In the second phase we will take travelling upstream or downstream into ac-
count. We will consider each direction separately. When processing a direction,
we’ll process the fairs in order, and for each of them we’ll determine whether it is
more profitable to start at this fair (i.e., use the value computed in the previous
step) or to start sooner (i.e., use the optimal value computed for the previous fair
in this step, subtract the cost of travel from that fair to this one, and add the
profit from this fair).

For each fair i, the actual value Pi is then equal to the larger of the two values
we get for travelling upstream and downstream.

Finally, we need to update the set of active fairs. When using an interval tree
data structure as in Section , this is accomplished simply by adding each fair to
the upstream and downstream interval trees. When using an ordered set as in
Section , one must take a little more care, as not all of the fairs that we have
just processed will be active. This is easily catered for by modifying our update



2009 August 8 - 15, Plovdiv, Bulgaria 59

process — before inserting a new active fair, we check that the fair is actually
active by examining its potential neighbours in the data structure. If either of the
neighbouring fairs covers the one being added, then it is not active, and so should
not be added to the active fairs set. With this modification, we can update the
entire data structure by sequentially attempting to add each fair (in any order).

Clearly, the additional time needed to process the second phase on any day
is linear in the number of fairs that day, assuming we already have them sorted
according to their location (which is easily accomplished by adding this as a tie-
breaker to the comparison function used to sort all fairs in the beginning). Fur-
thermore, the update steps for the interval tree and ordered set both take O(log N)
time. Therefore this extra step does not change the total time complexity of our
algorithm: it is still O(N log N).



60 21-st International Olympiad In Informatics

Problem Proposers:

Day 0

0.2 Hill - Iskren Chernev
0.3 Museum - Boyko Bantchev

Day 1

1.1 Archery - Velin Tzanov
1.2 Hiring - Velin Tzanov
1.3 POI - Carl Hultquist
1.4 Raisins - Emil Kelevedjiev

Day 2

2.1 Garage - Carl Hultquist
2.2 Mecho - Carl Hultquist
2.3 Regions - Long Fan and Richard Peng
2.4 Salesman - Velin Tzanov

Reserve Problems

Bruce Merry, Mihai Patrascu, Kentaro Imajo


