
IOI 2009 Day 0

Solutions

9 August 2009

1 Area

The area of a rectangle with sides Ak and Bk is Ak×Bk, so we simply need to add these products
up for each of the rectangles.

As noted in the problem statement, this problem was intended purely to get contestants to try
out the 64-bit integer types in their chosen languages. The only thing one must keep in mind is
that multiplying two 32-bit values will yield a 32-bit result, even if assigned to a 64-bit variable.
The safest thing to do is to use 64-bit variables throughout.

2 Hill

First we make an observation: starting at any point in the grid, we can “walk uphill” until reaching
a cell with no adjacent higher cells, which is a hill. Furthermore, if we start from a cell with height
h inside a region bounded entirely by cells with height less than h (or by the boundaries of the
entire grid), then this walk cannot leave this region, and hence we know that a hill must exist
inside this region.

We start the algorithm knowing that somewhere in the entire grid we have a hill. The algorithm
then repeatedly finds smaller and smaller rectangles known to contain hills. At each step of the
algorithm, we will have a rectangle with the following properties:

1. The highest cell seen so far falls inside this rectangle1.

2. The rectangle is bounded by cells strictly lower than this highest cell, or by the boundaries
of the original grid.

Although we do not actually perform an uphill walk, the property noted above guarantees that
this rectangle will contain a hill. If the rectangle is 1× 1, then it consists of just a cell which is a
hill, and the problem is finished. Otherwise, we can produce a smaller rectangle as follows.

First, use the laser scanner on every cell in a line that cuts the rectangle in half (either
horizontally or vertically, whichever will use the fewest scans). Let H be the highest cell that has
been seen so far (including the cells that have just been scanned). Now if H does not lie on the
cut, then it falls into one half of the rectangle. This half then satisfies the properties above, and
we have successfully reduced the size of the rectangle. If H lies on the cut, then some additional
work is required. Scan the cells immediately adjacent to H that have not yet been scanned, and
let H ′ be the new highest cell seen. If H ′ = H then H is a hill (since we have scanned all its
neighbours), and we can immediately terminate. Otherwise, H ′ does not lie on the cut, and we
can proceed to select one half of the rectangle as before.

By repeatedly finding smaller rectangles known to contain a hill, we must eventually find a
1× 1 rectangle and the problem is solved. An upper bound on the number of scans required is

1002 + 502 + 502 + 252 + 252 + · · · + 5 + 5 + 3 = 3023
1At the start of the algorithm, we have not seen any cells, but this turns out not to be very important.

1



Slightly tighter or looser bounds can be obtained depending on exact details of the implementation,
but this is not important as full points are awarded as long as the number of scans is at most
3050.

3 Museum

To solve this problem, we start by observing that if we have three vases with heights A, B and
C, such that either A is odd and C even, or A even and C odd, then no matter what B is these
three vases will not violate the condition of the exhibition organisers. This is because A + C must
therefore be odd, and so is not divisible by two, meaning that it is impossible for B to be the
average of A and C.

We therefore start by arranging the vases such that we place all the even vases first, and all
the odd vases second. This gives an arrangement that looks like this:

E1 E2 . . . Ep O1 O2 . . . Oq

where E1, E2, . . . , Ep are the even heights in some order, and O1, O2, . . . , Oq are the odd heights
in some order.

Now consider any heights A, B,C which violate the organisers’ requirements. By the observa-
tions above, either A and C are both even (in which case B is even, since it appears between A
and C and all the even values are grouped together), or A and C are both odd (in which case B
is also odd). In other words, we can consider the problems of ordering the even numbers and the
odd numbers separately.

Now suppose that a1, a2, . . . , ap is a permutation of the heights 1, 2, . . . , p which satisfies the
organisers’ requirements (this is a smaller instance of the problem, so it can be solved by divide-
and-conquer). Then simply assigning Ei = 2ai will satisfy the requirements on the even values.
Similarly, given a permutation b1, b2, . . . , bq of the heights 1, 2, . . . , q which satisfies the require-
ments, we can assign Oi = 2bi − 1.

Examining the properties of the resulting sequence gives another approach to generating the
same solution. We can write all the heights in binary form, and then sort them according to the
reverse of their binary form. This sorts first on the least significant bit (i.e., on whether they are
odd or even), then the next least significant bit and so on. To prove that this solution is valid,
note that if B is the average of A and C, then at the least significant bit that A and B first differ,
A and C must have the same value for that bit, placing A and C in a separate group from B when
sorting on that bit.

2


